LOCAL ECONOMY BENEFITS

- Reinforced concrete framing systems employ the local labour force to construct the building.
- Local Aggregate and Ready Mixed Concrete Producers are used to supply the ready mixed concrete for the building frame.
- A greater portion of the economic benefit of the project is concentrated in the local economy.

DESIGN SUPPORT SOFTWARE

- The Ontario Cast-In-Place Concrete Development Council (OCCDC), in conjunction with the Concrete Reinforcing Steel Institute (CRSI), has developed a Canadian version of the "ConSept Pro" software program.
- The "ConSept Pro" program allows Owners, Architects, Engineers and Contractors to quickly estimate the structural framing system costs for new buildings based upon six different reinforced concrete framing options for projects based in Canada or the United States.
- The Canadian portion of the program is based upon the requirements of CSA A23.3, the Ontario Building Code and National Building Code.
- The American portion of the program is based upon the requirements of ACI-318 and the BOCA National Building Code, the Uniform Building Code and the Standard Building Code.

If you have any questions regarding the use of reinforced concrete or would like to receive a copy of the "ConSept Pro" software program, please contact us at:

Ontario Cast-In-Place Concrete Development Council (OCCDC)
365 Brunel Road, Unit #3
Mississauga, Ontario
L4Z 1Z5
Phone: 1-877-668-2232
1-877-Ont-CCDC
Fax: 1-905-507-0096
E-mail: buildings@occdc.org
CHOOSING THE BEST CONSTRUCTION MATERIAL FOR THE FRAMING SYSTEM OF A NEW BUILDING IS ONE OF THE MOST IMPORTANT DECISIONS THAT AN OWNER/DEVELOPER, ARCHITECT/ENGINEER OR DESIGN-BUILD CONTRACTOR MUST MAKE.

The construction material selected has a significant impact upon:

- **Initial Capital Costs**
- **Speed of Construction and Early Return on Investment**
- **The Amount of Rentable Space Available**
- **Attracting and Retaining Tenants**
- **Yearly Energy and Maintenance Costs**
- **Cost of Insurance**
- **Building Aesthetics and Public Image**
- **Resale Value**

FAST-TRACK CONSTRUCTION

- **Quick Start-Up Times**: A reinforced concrete framing system does not require extensive pre-ordering of materials and fabrication lead time. Construction can begin on the foundations and lower floors prior to the structural design of the upper floors being finalized.
- **Reduced Total Construction Time**: Reinforced concrete buildings can be constructed at a rate of one floor per week (above the first few floors) and other sub-trades can begin work on completed floors earlier.

COST SAVINGS

- **Favourable Cash Flow**: Materials and labour are expensed to the project as they are completed, unlike structural steel, where substantial down payments are required months before the material arrives on-site.
- **Standard Floor Layouts**: Repetitive flooring systems which employ flying forms, uniform forming layouts and standard reinforcing steel details lead to significant cost savings.
- **Faster Forming/Reuse**: Performance Rated Concrete (PRC) allows for faster form stripping and reuse.
- **Lower Floor to Floor Heights**: Reinforced concrete framing systems allow for the lowest floor to floor heights, minimizing exterior cladding and vertical servicing costs.
- **Zoning Height Restrictions**: Reinforced concrete framing systems allow for a greater number of floors within a given building height restriction, due to lower floor to floor heights.
- **Thermal Resistance**: The thermal mass of a reinforced concrete structure offers a lower rate of building heat gain or loss resulting in reduced building cooling/heating costs. In addition, lower floor to floor heights result in a reduced interior volume of air that must be heated or cooled by the HVAC system.
- **Fire Resistance**: Reinforced concrete structures are inherently fire resistant and do not require the expensive secondary application of coatings in order to obtain the necessary fire rating values.
- **More Floor Space**: High Performance Concrete (HPC) means smaller column sizes and more rentable floor space.
- **Minimal Maintenance**: Concrete provides a hard, durable wearing surface that resists weathering extremely well.
- **Architectural Finishes**: Reinforced concrete can act both as a structural member and an architectural finish with the use of coloured concrete and special texturing techniques.

STRUCTURAL ADVANTAGES

- **Design Flexibility**: Structural design changes are more easily accommodated in the field with a reinforced concrete framing system due to the fact that the system is constructed on-site rather than months ahead of time at a fabricating plant.
- **Shear Wall Design**: Reinforced concrete shear walls efficiently carry the lateral and gravity loads applied to a building while also acting as interior partitions and sound dampers.
- **Structural Integrity**: Additional reinforcing steel can be used to prevent structural failure under extreme conditions (exterior or interior explosions) at a minimum of cost.
- **Maximum Vibration and Earthquake Resistance**: Reinforced concrete buildings are inherently stiffer than structural steel framing systems thereby eliminating the floor vibration associated with structural steel. Seismic considerations can also be more easily handled with a reinforced concrete framing system through the use of shear walls and reinforcing steel detailing techniques.
- **Sound Isolation**: The high mass of a reinforced concrete structure reduces sound migration from floor to floor and room to room.
- **Underground Parking**: A reinforced concrete framing system easily allows for the creation of underground parking structures, thereby maximizing land use.
- **Minimal Staging Areas**: Concrete pumping techniques allow for high-rise construction in busy downtown centres adjacent to existing structures.
- **Adaptability to Unforeseen Soil Conditions**: Reinforced concrete framing systems can be modified to meet actual site conditions without extensive project delays.

ENVIRONMENTAL CONSIDERATIONS

- **Recycled Materials**: Recycled materials are used in the production of reinforcing steel. As well, supplementary cementing materials are waste by-products from other industrial processes that, in the production of ready mixed concrete, improve the performance characteristics of the cast-in-place concrete.
- **Transportation Considerations**: Since reinforced concrete involves a greater use of local materials, the overall environmental costs associated with transportation are reduced.
- **Low Energy Intensity**: While the production of cement is very energy intensive, concrete only contains 9% - 15% cement. Concrete’s other major components, aggregates and water, make concrete a very low energy building material.
Reinforced concrete is the best choice for the building framing system based upon the following advantages:

ENVIRONMENTAL CONSIDERATIONS
- Low Emissions: Concrete is considered a low-emissions building material, with a lower carbon footprint than other construction materials.
- Recycled Materials: Recycled concrete materials are used in the production of reinforcing steel, reducing the need for new raw materials.
- Reduced Water Consumption: Concrete requires less water than other building materials, reducing its environmental impact.
- Sustainable Source: Concrete is sourced from local materials, reducing transportation emissions and costs.

STRENGTH AND DIMENSIONS
- Maximum Tensile and Bending Resistance: Reinforced concrete structures are inherently stronger than structural steel framing systems, which can withstand extreme conditions and contribute to the overall strength of the building.
- Greater Size: Reinforced concrete structures can be built in a single piece, eliminating the need for multiple pieces and reducing labor costs.
- Cost-Savings: Building with reinforced concrete provides more rentable floor space, reducing the need for additional floors.

DESIGN FLEXIBILITY
- Structural Design Changes: Reinforced concrete structures can be easily modified in the field, allowing for changes in design as needed.
- Quick-Track Construction: Reinforced concrete framing systems allow for the lowest floor to floor heights, enabling faster construction timelines.

CONSTRUCTION ADVANTAGES
- Fast-Track Construction: Reinforced concrete framing systems allow for the lowest floor to floor heights, enabling faster construction timelines.
- Lower Floor to Floor Heights: Reinforced concrete framing systems allow for the lowest floor to floor heights, enabling faster construction timelines.
- Minimal Staging Areas: Reinforced concrete framing systems allow for the lowest floor to floor heights, enabling faster construction timelines.

FINANCIAL ADVANTAGES
- Initial Costs: Reinforced concrete framing systems are typically less expensive than other framing systems, reducing the initial cost of construction.
- Yearly Energy and Maintenance: Reinforced concrete structures provide a significant reduction in energy consumption, resulting in lower maintenance costs.
- Cost of Insurance: Reinforced concrete structures provide a natural fire resistance, reducing the cost of insurance.

ARCHITECTURAL FINISHES
- Architectural Finishes: Colored concrete and special texturing techniques can be used to create unique finishes, adding visual interest to the building.

LOW ENERGY INTENSITY
- Reinforced concrete: A naturally fire-resistant building material, reducing the need for additional fire protection.
- Transportation Considerations: Reinforced concrete requires less transportation, reducing its environmental impact.

FAVOURABLE CASH FLOW
- Direct benefits: Reduced construction timelines and lower costs can be realized immediately.
- Indirect benefits: Increased productivity and reduced labor costs can also be realized.

THE CONSTRUCTION MATERIAL SELECTED HAS A SIGNIFICANT IMPACT UPON:
- Initial Capital Costs
- Speed of Construction and Early Return on Investment
- The Amount of Rentable Space Available
- Attracting and Retaining Tenants
- Yearly Energy and Maintenance Costs
- Cost of Insurance
- Building Aesthetics and Public Image
- Resale Value
LOCAL ECONOMY BENEFITS

- Reinforced concrete framing systems employ the local labour force to construct the building.
- Local Aggregate and Ready Mixed Concrete Producers are used to supply the ready mixed concrete for the building frame.
- A greater portion of the economic benefit of the project is concentrated in the local economy.

DESIGN SUPPORT SOFTWARE

- The Ontario Cast-In-Place Concrete Development Council (OCCDC), in conjunction with the Concrete Reinforcing Steel Institute (CRSI), has developed a Canadian version of the "ConSept Pro" software program.
- The "ConSept Pro" program allows Owners, Architects, Engineers and Contractors to quickly estimate the structural framing system costs for new buildings based upon six different reinforced concrete framing options for projects based in Canada or the United States.
- The Canadian portion of the program is based upon the requirements of CSA A23.3, the Ontario Building Code and National Building Code.
- The American portion of the program is based upon the requirements of ACI-318 and the BOCA National Building Code, the Uniform Building Code and the Standard Building Code.

IF YOU HAVE ANY QUESTIONS REGARDING THE USE OF REINFORCED CONCRETE OR WOULD LIKE TO RECEIVE A COPY OF THE "ConSept Pro" SOFTWARE PROGRAM, PLEASE CONTACT US AT:

Ontario Cast-In-Place Concrete Development Council (OCCDC)
365 Brunel Road, Unit #3
Mississauga, Ontario
L4Z 1Z5

Phone: 1-877-668-2232
1-877-Ont-CCDC

Fax: 1-905-507-0096
E-mail: buildings@occdc.org